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Rheology of non-Newtonian glass-forming melts 
Part II Kinetics of relaxation and retardation 
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A general formalism describing the kinetics of relaxation and retardation in glass-forming 
materials is developed. By introducing the real flow behaviour of a particular system into an 
extended analogue of Maxwell's equation, a set of non-linear relaxational and retardational 
dependences, applicable to liquids with different structures, is obtained. The Kohlrausch 
stretched-exponent formula and similar dependences with time-dependent relaxation times are 
also derived. A comparison with established empirical relations and existing experimental data 
gives satisfactory coincidence. 

1. I n t r o d u c t i o n  
From a more general point of view, the relaxation of 
strains in glasses or the retarded reaction of glass- 
forming melts under an external disturbance can be 
treated either as an evolution of the frozen-in system 
towards equilibrium (relaxation as a process of glass 
stabilization [1-6])  or as a response of a dissipative 
system to a time-limited external influence. Thus the 
theology of glass-forming melts which determines the 
kinetics of the two most significant processes in under- 
cooled melts (their vitrification [6] and crystallization 
[7, 8]) also gives an illustration of the behaviour of 
dissipative systems in general. 

It was mentioned in Part I of the present investiga- 
tion [9] that Maxwell's equation in its classical formu- 
lation cannot describe the kinetics of relaxation in 
glass-forming melts [1, 10]. In order to overcome the 
deficiencies of this classical formulation two other 
approaches have been advanced the use of a set of 
linear Maxwellian-type equations with different re- 
laxation times [6, 11, 12], or the employment of 
empirical non-linear formulae with time-dependent 
relaxation times [6, 13-16]. These approaches contain 
a logistic inconsistency: it is known, as it is demon- 
strated also in Part I [9], that the flow of real glass- 
forming systems under stress is, in fact, non-linear 
non-Newtonian, whereas in the above formulations 
only linear Newtonian flow is anticipated. 

This is why we suggest here an alternative formal- 
ism: to introduce in an appropriate way the real non- 
linear flow kinetics into a generalized analogue of 
Maxwell's equation, and thus to derive the non-linear 
kinetics of relaxation. This approach, which was in- 
dicated for the first time by Eyring [17], gives an 
additional and very serious advantage: knowing the 
flow of the system (e.g. from the experiment) a definite 
relaxational behaviour should be expected. In this way 
the relaxation kinetics is not predetermined by any 
assumptions (e.g. by the hypothesis of the existence of 

a spectrum of relaxation times) but follows in a natu- 
ral way from the mechanism of flow. 

In deriving the classical relaxational and retarda- 
tional equations of the phenomenological theology, 
Maxwell and Kelvin have used linear combinations of 
mechanical elements (e.g. of Hookean-like springs and 
Newtonian-like dash pots). At present, the linear com- 
bination of the elements in these equatioins can be 
derived in the framework of the thermodynamics of 
irreversible processes [18] where it can be considered 
as a consequence following from the dynamic equa- 
tion of state [19]. Accepting this thermodynamic re- 
sult and accounting for the non-Newtonian flow beha- 
viour of real glass-forming melts (i.e. introducing 
a non-linear element in this way), non-linear relax- 
ational dependences and time-dependent relaxation 
times are obtained. 

We define below an apparent time of relaxation in 
analogy to the widespread procedure of introducing 
an apparent viscosity. This approach is similar to the 
thermodynamic method of employing activity coeffic- 
ients for describing non-ideal behaviour of a real sys- 
tem. Thus our task is reduced to the mathematical 
problem of solving a number of differential equations 
in which different flow-stress dependences following 
from the same theoretical flow model are introduced 
into an extended Maxwellian equation. 

As a basic theoretical flow model, the Prandtl-  
Eyring potential barrier approach is used. 

2. Basic f low-stress dependences 
The analysis, performed in Part I [9], has shown that 
a very general dependence connecting the shear rate of 
flow, "), and the shear stress, S is 

A 
= - -  sinh (aS)exp( - F0+) (1) 

q0 

Equation 1 was derived in Part I [9] by extending the 
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concept of the Prandtl-Eyring potential barrier model 
to include dilatant effects. Here rio = constant is the 
Newtonian viscosity of the melt, the parameter 
a = 1/A is determined by the so-called viscous volume 
of the strfictural units taking part in the flow process 
and Fo is a factor reflecting the complexity of molecu- 
les and especially their ability to form entanglements 
upon flow. 

A thorough discussion on the problems of molecu- 
lar flow, on the derivation of Equation 1, as well as 
on the physical nature of a, A and Fo, is given in 
Part 1 [9]. 

For melts, which exhibit no dilatant effects, Fo = 0 
and Equation 1 gives the classical Prandtl-Eyring 
formula [20-23] 

4[ = A sinh(aS) (2) 
qo 

describing the flow of pseudoplastic (or even plastic 
[24]) liquids. Using the well-known approximation of 
the sinh (x) and exp (x) functions, all existing empirical 
formulae proposed for 4/(S) dependences can be easily 
obtained (see Part I [9]). In this connection the de 
Waele-Ostwald equation is of special interest [-25, 26] 

S" 
4/ = & - -  (3) 

qo 

where A2 and n are empirical constants. At n > 1, 
Equation 3 accounts for pseudoplasticity and at n < 1 
dilatant behaviour follows. The advantage of Equa- 
tion 3 is in its obvious simplicity. However, as shown 
in Part I, it is applicable with n = constant only for 
relatively narrow S intervals. 

Three other important 4/(S) approximations can be 
obtained from Equation 1 as limiting cases [9]. 

(i) For Fo4/<< 1, Equation 1 transforms into 

F A . -]1/2 
LGT  smh(aS)] (4) 

where F~ is an appropriately chosen constant. 
(ii) For Fo4/>> 1 the following relations 

) 4/~ In qo + In aS (5a) 

4/~ ln~o + ~aS (5b) 

are obtained for aS << 1 and for aS >> 1, respectively. At 
aS < 1, Equation 4 gives Darcy's formula, i.e. Equa- 
tion 3 with n = 1/2. 

For aS--* O, Equations 1-3 lead directly to New- 
ton's law 

S 
~, = - -  (6) 

rio 

Equation 1 and the approximations derived from it 
describe with sufficient accuracy any type of flow: 
pseudoplastic (or plastic), dilatant as well as the 
transition from dilatant to pseudoplastic (see [9]). 

3. Stress dependence of the 
apparent viscosity 

In order to retain the linearity of the flow-stress de- 
pendences even for non-Newtonian flow, an apparent 
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value of the viscosity 11 (S) = 1"lapp can be introduced 
by the relation 

S 
= (7) 

]lapp 

Equation 7 gives all benefits known from the ther- 
modynamic treatment of real systems in which the 
simple form of laws derived for ideal solutions, ideal 
gases, etc., is preserved by the introduction of thermo- 
dynamic activity coefficients depending on concentra- 
tion, pressure, etc. In this way the use of linear depend- 
ences is guaranteed even when the system under con- 
sideration is far from ideal. 

In the 4/(S) dependences considered above the ap- 
parent viscosity can always be expressed in the form 

qo 
qapp -- lt[/(S) (8) 

where qKS) is a dimensionless function of S. For 
pseudoplastic liquids, ~(S) is either 

sin h aS 
O(S) - (9) 

aS 

(cf. Equation 2) or it can be considered as being ob- 
tained from Equation 9 using some of the approxima- 
tions mentioned for the sinh(x) function. Thus for 
Equation 3, ~(S) is given by 

ql(S) = A2 Sn-1 (10a) 

According to Equations 9 and 10 (for n > l) a decreas- 
ing qapp(S) dependence is always obtained (pseudo- 
plastic liquids). Some typical cases are 

qJ(S) = A2S (10b) 

forn  = 2, or 

, ( s )  = A2S 1/2 (10c) 

for the semi-cubic parabola case (n = 3/2). This 
n value, as discussed in Part I, corresponds to the flow 
of most glass-forming melts when it is described in 
terms of the de Waele-Ostwald equation. However, 
with n < 1 (as it is in Darcy's equation), an increasing 
Tlapp(S ) function with 

Az 
ql(S) - S1/2 (10d) 

is expected (dilatant liquids). The simple analysis of 
the generalized ~,(S) dependence given with Equation 
1 indicates that dilatant behaviour generally follows at 
aS < 1 and Fo7 < 1, i.e. at relatively small shear-stress 
values and for relatively complex molecules, where 

( qosinh aS "~ 1/2 
~(S) ~ \ F ~  ~ j ( l la) 

At Fo4/> 1 we must expect either 

const. + rlolnaS 
, (S)  = S (llb) 

from Equation 5a, or 

(rio in A ~ S - 1  q~ a = + (11c) 
~(S) \ r o  q o /  2Fo 



from Equation 5b. Equation 11a-c predict dilatant 
behaviour of rlapp at smaller aS values and a quasi- 
Newtonian behaviour (i.e. Tlapp ~ constant) at high aS 
values. 

4. Apparent relaxation t ime 
It is also useful to introduce an apparent time of 
relaxation (or apparent time of retardation) in analogy 
to the procedure adopted with Equations 6, 7. Assum- 
ing Newtonian flow for which Maxwell's classical 
dependence 

dS S 
- ( 1 2 )  

dt To 

holds we define for ideal systems a Maxwellian time of 
relaxation 

1]0 
~o - ( 1 3 )  

go 

where go is the respective shear modulus of the body 
under consideration. 

Analogous to Equation 8, an apparent relaxation 
time, Zapp, characterizing real systems, can be intro- 
duced 

r]app 
Tap p - -  

go 

r io  
- ( 1 4 )  

go~t(S) 

assuming that go remains constant at the S values 
under consideration. 

Thus, accounting for Equation 14, Equation 12 can 
be transformed into 

dS 

dt 

S 
"~app 

s~,(s) 
tO 

(15) 

where to is defined using Equation 13. For liquids 
with Newtonian flow, ~(S) in Equation 8 is equal to 
unity and the well-known solution of Equation 12 
follows (at the boundary condition S = So for t ~ 0) 

S = Soexp - (16) 

known as Maxwell's relaxational law. 
For non-Newtonian liquids, however, Equation 15 

indicates that the integral ~dS/(S~(S)) must be solved 
for the cases of different ~(S) functions (Equations 
9-11) already discussed. 

5. Non-l inear kinetics of relaxation 
In order to analyse the kinetics of relaxation for sys- 
tems with a given type of non-Newtonian flow, we 
must introduce, through Equation 14 the respective 
~(S) function given with Equations 9-11, into Equa- 
tion 15. 

Thus for Prandtl-Eyring liquids (see Equation 9) 
with the boundary condition already mentioned, the 

following relaxational equation is obtained 

This formula was derived, in fact, years ago by 
Tobolsky and Eyring [27]. 

The general solution of the relaxation kinetics, 
when instead of Equation 9 the de Waele-Ostwald 
approximation (Equation 10) is used, reads 

S =  So[ l  + ( n -  l )S~-l  A2 t~ 1/(n-1) (18) 
L - t 0  j 

This solution gives rise to a number of important 
particular cases. At n = 2 from Equation 18 follows 
the well-known Adams-Williamson empirical anneal- 
ing formula discussed in detail by Morey [1]. It is 
usually written in the form 

1 1 t 
- A2-- (18a) 

S So Zo 

Taking into account that for small aS values (as found 
in Part I [9]), n in equation 3 is about 3/2, we should 
suggest that for pseudoplastic liquids a better relax- 
ational dependence in terms of Equation 18a should 
read 

1 1 1 t 

$1/2 S~/2 - 2A2~o (lSb) 

For higher aS values, corresponding to the n = 5/2 
approximation of Equation 18 a more appropriate de- 
pendence would be 

1 1 3 t 
$3/2 $3/2 - 2A2~o (18c) 

In the case of dilatant liquids for n = 1/2 (i.e. for 
Darcy's formula) we have 

1 t 
S 1/2 - S~/2 - 2A2 (18d) 

"% 

In deriving the problems of the kinetics of relax- 
ation in general, i.e. accounting for dilatant effects we 
must consider a number of mathematical problems. 

The integration of Equation 15 with the qt(S) func- 
tion having the form given with Equation 1 la (i.e. at 
Fo~' < 1) leads to [28] 

{ 1} , 
F dp [f(aSo)], ~i2 - Po--  

TO 
(19) 

where Po = (qoFg) 1/2 and F{O[f(aS)] ,  1/21/2} de- 
notes the first order elliptic integral function [28-30] 
with a modulus k = 1/21/2 and an amplitude, qb, deter- 
mined by 

qb = arc cosf  (20a) 

where 
1 - sinh aS 

f - 1 + sinhaS (20b) 

As shown in Fig. 1, where tabulated values of the 
mentioned elliptic integral function have been used 
[30, 31], a linear F{qb, 1/21/2} versus d 0 dependence 
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Figure 1 The solution of the kinetics of relaxation in the general dilatant pseudoplastic case: (a) the F(Op, 1/21/2) versus ~ relation (Equation 
20c), (b) the arccos f versus f dependence (Equation 20a), (c)f versus aS function (Equation 20b), (d) the three possible solutions: (1) Y1, 
F { 9 [ f ( a S ) ] ,  1/21/2} versus aS (Equation 19) (left-hand side coordinate); (2) Y2, the approximate solution of Equation 20 (left-hand side 
coordinate); (3) Y3, the li(aS) function (Equation 21) (right-hand side coordinate). 

exists and thus 

1 
F {qb[.f(aS)], ~75} ~ q• (20c) 

where q = 1.2 (Fig. la). Accounting for the course of 
the arc cos(f) and the f(aS) functions (Equations 20a, 
b and Fig. lb, c) and for Equation 20, the F{qb[f(aS), 
1/21/2 } versus aS dependence given in Fig. ld follows. 

It is difficult to recommend a simple approximation 
to Equation 19 in terms of elementary functions. The 
expansion of the arccos(f)  and the f(aS) functions 
using Taylor's formula (accounting for the first terms 
in the respective series) gives, with the mentioned 
q value 

F { ,[f(aS)], 2 ~  } ~ q ~ + 21n(aS) (20d) 

However, Equation 20d is a poor approximation of 
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Equation (19) as can be also seen from Fig. ld (curve 
2). So the F{~p[f(aS), 1/21/2} values from Fig. ld 
(curve 1) must be used in quantitative calculations of 
the relaxation of systems exhibiting a combination of 
dilatant and pseudoplastic flow at relatively small 
dilatant interaction (i.e. at Fo~'<< 1). 

The other limiting case of combined pseudoplastic 
and dilatant behaviour (i.e. Foy>> 1) should be in gen- 
eral, a rare event. Equation 1 lb introduced into equa- 
tions 14 and 15 gives, after integration, a formula 
which includes another non-elementary function: the 
integral logarithm li(x) [29, 31] 

LqoFoJ LqoFo J Zo 
(21) 

The resulting dependence is depicted in Fig. ld 
(curve 3). 



In order to compare and to illustrate the solutions 
for the kinetics of relaxation of a liquid with Newto- 
nian flow (i.e. Maxwell's equation (Equation 16)) with 
those following for pseudoplastic liquids (i.e. the 
Tobolsky-Eyring formula, Equation 17) with our 
solutions for the empirical ~,(S) functions (i.e. Equa- 
tions 18a d) and with the generalized model for 
a pseudoplastic and dilatant non-Newtonian behavi- 
our (Equations 19 and 21) it is convenient to write 
all these functions in an exponential form. Thus we 
obtain 

= e x p ( F { ~ [ f ( a S o ) ] , 2 ~ } ) e x p l - P o @ o l  (22a) 

from Equation 19 

exp{li[(aS)n]} =exp[li(aS)n]exp(-Po@o) (22b) 

from Equation 21 

tgh(a f f )  = ,  h/aSo~ [ _  t tg ~ ~ - ) e x p ~  ~ )  (22c) 

from Equation 17 

exp[2(aS) 1/2] = exp[2(aSo)l/2]exp - (22d) 

from Darcy's equation, and 

e x p ( - 1 )  = e x p ( - L ) e x p ( - A 2 ~ o  ) (22e) 

from the Adams-Williamson equation. Considering 
also the classical Maxwell result (Equation 16) it is 
evident that for all types of flow behaviour the kinetics 
of relaxation can be written in the general form 

Y(aS) = Y(aSo)exp( - @o) (23) 

where Y denotes one of the aS functions considered 
above. In the simplest case of a Newtonian liquid the 
Y function degenerates to aS itself. These dependences 
are illustrated in Fig. 2. 

It is important to note that in generalizing the 
discussed solutions (Equation 16-19 and 21) they can 
be written also in the form 

t 
z(aS) = z(aSo) - - -  (24) 

Zo 
where Z denotes different aS functions always having 
a logarithmic-type course. This applies also to the li(x) 
function in Equation 22b which can be approximated 
in the form (see [29, 31] 

~ (lnx) j 
li(x) = eo + l n ( - l n x )  + (25) 

j=l J'J! 
where % = 0.577 is Euler's constant. Thus for aS < 1, 
an appropriate approximation of the li(aS) function 
(Equation 21) takes the form 

l i ( aS)~0 .6  + In lnaS + aS + (26) 

4 
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Figure 2 Exponential representation of the kinetics of relaxation. 1, 
Maxwell's solution for relaxation of Newtonian liquids (Equation 
16); 2, Tobolsky Eyring formula (Equation 22c) for pseudoplastic 
non-Newtonian behaviour; 3,4, generalized pseudoplastic and 
dilatant behaviour according to the generalized model at F0%< 1 
(curve 3) (Equation 22a) and for Fo~,>> 1 (curve 4) (Equation 22b); 5, 
the exponential form of the Adams-Williamson equation (Equation 
22e). 

Finally, it should be mentioned that according to 
Maxwell's differential equation (Equation 12), the rate 
of stress relaxation is proportional to the stress itself. 
This linear dependence is the simplest possible as- 
sumption. From the present discussion (and especially 
from Equations 9 11, it is evident that the more accu- 
rate approximation for the relaxation in a pseudoplas- 
tic liquid should not read 

dS _ A2 S 2 (27) 
dt to 

which corresponds to the Adams-Williamson anneal- 
ing formula (Equation 18a) (see also [1]), but 

dS A 2 ( 1 + 1 8 2 )  (28) 

or  

dS _ A2sn_ls (29) 
dt % 

with n = 3/2 to 5/2. The above equations follow from 
the approximate representations of Equation 2 (cf. 
Equations 10a-e). This remark should be taken into 
account in discussing further attempts for optimal 
relaxationat formulae. 

In this respect, it is of particular interest to note that 
Equation 18c appears to be the optimal approxima- 
tion in describing the kinetics of birefringence 
relaxation in technical glasses (Fig. 3). For the experi- 
mental data given in this figure, neither Maxwell's 
equation (Equation 16) nor the Adams Williamson 
empirical formula (Equation 18a) proved to_be applic- 
able over the whole range of aS values. Similar results 
are also obtained for other experimental data, e.g. for 
the relaxational experiments reported by Narayana- 
swamy [32, 33], analysed in terms of equations 18a d. 
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Figure 3 Application of Equation 18 with n = 5/2 to the particular 
problems of glass-annealing kinetics. Experimental data for anneal- 
ing of optical birefringence in Pyrex glass as reported by Morey [1]. 

6. Kohlrausch's equation and 
time-dependent relaxation times 

In considering the flow kinetics of liquids under con- 
stant stress, it is assumed that the t)(S) function in 
Equation 8 has a time-independent constant value. In 
the kinetics of relaxation, however, ~(S) in Equation 
14 is, in fact, a time-dependent function changing from 
~(S) = ~(So) (at t--*0) to ~ ( S ) =  4(0) (at t ~  oo). 
Thus our modified Maxwetlian equation (Equation 
15) can also be written in the equivalent form 

dS 1 
- - ~ ( t ) s  (30) 

dt "Co 

where ~(t) --- ~(S) is a time-dependent function. The 
exact form of the ~(t) dependence for a given t~(S) 
function. Thus, accounting for Equation 10a and for 
tion following from the solution of the respective 
Maxwellian equation into the corresponding q/(S) 
function. Thus, accounting for Equation 10a and for 
the solution of the de Waele-Ostwald case (Equations 
18a-d) the result is 

A2S~ -1 
~(t) = [1 + ( n - -  1)S~-tA2(t/to)] (31) 

while the Tobolsky Eyring formula (Equation 17) de- 
termines the S(t) function as 

E(a o) ( o)1 S(t) = -a rc tgh  tgh exp - (32) 
a 5 -  

The above S(t) dependence introduced into Equation 
9 gives 

sinh{2arctgh [tgh(aSo/2) exp( - t/%)]} (33) 
~(t) = 2 arctgh[tgh(aSo/2)exp( - t/%)] 

This dependence (assuming tgh (S /2)~  1) has been 
used in constructing the respective ~(t) functions 
shown in Fig. 4b. 

In an analogous way, we can determine the ~(t) 
function for the general dilatant-pseudoplastic case 
(at F~,<< 1) according to Equation 19 with the reverse 
function of the elliptic integral, i.e. by introducing into 
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Figure 4 Illustration of the similarities and differences between the 
relaxational and ~(t) functions. (a) Relaxational dependences. 1, 
Maxwell's relaxational law (Equation 16); 2, relaxational depend- 
ence according to Equation 18 with n = 1.3; 3, Kohlrausch's frac- 
tional exponent relaxational formula (Equation 36) with b = 0.67. 
(b) ~(t) dependences. 1, ~(t) function according to Equation 31 with 
Az = 1.2, So = 10 and n = 1.5; 2, ~(t) function corresponding to 
Kohlrausch's differential equation (Equation 35) with m = 1.33, 
A k = 1.2 and So = 10; 3, ~(t) dependences corresponding to the 
Tobolsky-Eyring formula (Equation 33). 

Equation 1 la the expression 

(I S(t) = am F ~ [ f ( a S ) ] , 2 T  5 (34) 

where am(u) denotes the amplitude function of the 
elliptic integral F(qb, k) function [29, 30]. 

The same procedure can be also applied to Equa- 
tion 21 in order to determine S(t) in the dilatant case 
F)>> 1 by means of the reverse li(x) function [29, 31] 
and thus to determine the q/(t) function corresponding 
to Equation l lb .  

In 1876, Kohlrausch [13] suggested a differential 
equation for relaxational processes which in our nota- 
tions can be written as 

dS _ Ak S 
dt Zot v 

1 
- S (35 )  

t(t) 

It is seen that this equation is more general than 
Maxwell's original formula (Equation 12) in assuming 
a time-dependent relaxation time "~(t) = totP/Ak. The 



solution of Equation 35, which reads 

S = S0exp - (36) 

is the already mentioned fractional (or "stretched") 
exponent function. Here rk = (%b/Ak) 1/6 and 
b = 1 -  p. According to the evidence collected by 
Mazurin [6] for the relaxation in glass-forming melts 
b ~ 0.5-0.75; for polymers, lower b values (b- -0 .3-  
0.35) have been reported [16]. 

Equations 35 and 36 have been proposed and used 
for many years as purely empirical formulae. Mazurin 
[6] suggested that the fractional exponent function 
has to be applied in relaxational processes in which 
the structure of the system changes during stress re- 
laxation. More recent attempts to give a general theor- 
etical background to Kohlrausch's equation may be 
found in the literature [34, 35]. 

From the foregoing discussion it is obvious that 
Equation 35 can be simply considered as an approx- 
imation to Equation 31 in which the expression 
[1 + (n - 1)S~- lA2( t /%)]  is replaced by At  "-1. In 
terms of such a representation it turns out that 
p ~ n - I  and b = 2 - n ,  where n denotes the de 
Waele-Ostwald coefficient (cf. Equations 3, 10 and 18) 
in the respective flow stress or relaxational equation of 
a given system and p and b are the coefficients of both 
Equations 35 and 36 proposed by Kohlrausch. 

It should be noted, that at t ~ 0 the Kohlrausch 
qJ(t) function leads to qJ(t)~ oo instead of ~t(t) 
S~ -1 as required by Equation 31. However, Fig. 
4 shows that Kohlrausch's ~(t) function is, in fact, 
a very good approximation to the qJ(t) course pre- 
dicted by the general solution of the pseudoplastic 
flow case, i.e. by the ~(S) function (Equation 33), 
corresponding to the Tobolsky-Eyring formula. In 
this sense, Kohlrausch's time-dependent relaxational 
formula is a remarkable approximation to the kinetics 
of relaxation of any pseudoplastic liquid. The above 
considerations give a simple method for determining 
the type of flow, i.e. the respective de Waele-Ostwald 
equation of flow from the b value in Equation 36. The 
b values mentioned give an indication that all glass- 
forming melts described by Mazurin [6] are pseudop- 
lastic liquids with n = 1.25-1.5, as was, in fact, found 
in Part I [9]. 

A better approximation to Equation 31 gives a dif- 
ferential equation proposed by Jenckel [15, 36] ac- 
cording to which 

dS A 
- -  - - -  S ( 3 7 )  
dt 1 + at m 

At present it is difficult to say to what extent the 
Kohlrausch formulae (Equations 35 and 36) also ap- 
proximate Equation 34, i.e. the relaxation with com- 
bined pseudoplastic and dilatant effects or the relax- 
ation in purely dilatant liquids where b > 1 should be 
expected (i.e. b = 3/2 for Darcy's equation). 

7 .  K i n e t i c s  o f  r e t a r d a t i o n  

In the same way as we have considered the kinetics of 
relaxation, we can also treat the kinetics of retarded 

reactions in a glass-forming melt under constant stress 
S = So. Starting with the classical Kelvin-Voigt equa- 
tion (applicable, in fact, only to Newtonian liquids) the 
kinetics of retarded change of some extensive prop- 
erty, o, of the system [37] (volume, index of refraction, 
etc.) is determined by 

where the retardation time, t0, is again given by Equa- 
tion 13. 

Denoting e0~ -- S/go (i.e. cow is the value of w(t) at 
t ~ oo ) we obtain (with the necessary boundary con- 
dition o = 0 at t--, 0) the classical solution of the 
Kelvin-Voigt equation 

exp( o) 1 
Considering this solution, Equation 38 can be written 
in the form 

d[o( t ) ]  dt - "c~ - z~) (40) 

Introducing again with Equation 14 an apparent 
time of relaxation r,pp (here time of retardation), 
we can analyse the kinetics of retarded reaction in 
non-Newtonian liquids by writing in analogy to 
Equation 40 

d[o( t ) ]  d(~tpp) exp ( t )  
dt - - ~ (41) 

In order to determine the time dependence of %pp, we 
can use the formalism of the ~(t) functions, employed 
in the preceding section. 

Thus we obtain with Equation 41 the kinetics of the 
retarded reaction of a pseudoplastic non-Newtonian 
liquid following the Prandtl-Eyring mechanism of 
flow in the form 

tgh(aSo[o( t )  - COo] aSo t 

This dependence has to be used instead of Equation 39 
when Equation 2 and not Newton's law describes the 
flow of our systems. In this way a complete set of 
equations can be derived giving a new formulation of 
the kinetics of retarded reaction of a dissipative sys- 
tem. The corresponding formalism is discussed in 
greater details in a forthcoming publication [-38]. 

8 .  D i s c u s s i o n  

It transpires that by using 4/(S) dependences describ- 
ing the real non-Newtonian flow of glass-forming 
melts, a set of non-linear relaxational equations can be 
obtained. Comparison with existing empirical for- 
mulae and experimental data shows, in fact, that it is 
possible to derive a self-consistent and sufficiently 
accurate description of the experimentally observed 
non-linear relaxation kinetics. Knowing the type of 
flow behaviour of the glass-forming system, it is pos- 
sible to predict the type of its relaxation and even to 
calculate the parameters governing this process. Thus, 
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when n in the de Waele-Ostwald equation (Equation 
3) is 3/2, a distinct value of the empirical dS/dt rela- 
tion follows, and equations similar to the 
Adams-Williamson formula find their physical justifi- 
cation. The value of the parameter b in Kohlrausch's 
formula also can be directly calculated in this way. 

In our derivation we have used the classical 
Prandtl-Eyring potential barrier model. Its applica- 
tion to experimental data raises a number of questions 
when quantitative agreement with the structure of the 
liquid is required. Other models, describing with suffi- 
cient accuracy the ~,(S) dependences, also could be 
used. Our preference for the Prandtl-Eyring formalism 
stems from the conviction that a derivation made in 
the framework of such a general approach as the 
Absolute Rate Theory has to be basically correct, at 
least in a qualitative way. This was proved by our 
analysis performed in Part I [9]. 

In treating the response of a dissipative system 
exhibiting different types of molecular flow, we intro- 
duce non-linear flow into the linear Maxwell's equa- 
tion in the same way as activity coefficients are 
introduced into the thermodynamics of non-ideal 
systems. In the same time, we preserve the value of the 
elastic modulus, go, in Equation 14, constant. This 
means that we assume non-linear non-Newtonian 
flow kinetics but the elastic elements in the system 
remain linear, as in Maxwell's original derivation. 

In the classical analysis of Maxwell and Kelvin 
a linear combination of linearly functioning mechan- 
ical elements has been assumed. In modern pheno- 
menological rheology, different mechanical models of 
non-linearly functioning elements connected in linear 
combinations are frequently used for describing non- 
linear relaxation and retardation kinetics. An example 
in this sense gives Sobotka's monograph [38] where 
problems similar to ours are considered for another 
case: for metallic materials under high stress with 
non-linear elastic behaviour but with linear flow char- 
acteristics. 

In a forthcoming paper [39] we derive the formal- 
ism described here by using the above method of 
argumentation: we introduce non-linearly functioning 
mechanical viscous elements (Newtonian-like dash- 
pots) into a linear combination with classical elastic 
mechanical elements (Hookean-like springs). The con- 
nection between these two approaches - the one de- 
rived in the framework of the thermodynamics of 
irreversible processes and the other following from the 
phenomenological rheology - can be easily estab- 
lished. A discussion in this respect can be found in 
a paper recently published [7]. 
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